Find the Power of K-Size Subarrays I
Difficulty: Medium
Category: DSA
Topics: Array, Sliding Window
You are given an array of integers `nums` of length `n` and a _positive_ integer `k`.
The **power** of an array is defined as:
- Its **maximum** element if _all_ of its elements are **consecutive** and **sorted** in **ascending** order.
- -1 otherwise.
You need to find the **power** of all subarrays of `nums` of size `k`.
Return an integer array `results` of size `n - k + 1`, where `results[i]` is the _power_ of `nums[i..(i + k - 1)]`.
**Example 1:**
**Input:** nums = [1,2,3,4,3,2,5], k = 3
**Output:** [3,4,-1,-1,-1]
**Explanation:**
There are 5 subarrays of `nums` of size 3:
- `[1, 2, 3]` with the maximum element 3.
- `[2, 3, 4]` with the maximum element 4.
- `[3, 4, 3]` whose elements are **not** consecutive.
- `[4, 3, 2]` whose elements are **not** sorted.
- `[3, 2, 5]` whose elements are **not** consecutive.
**Example 2:**
**Input:** nums = [2,2,2,2,2], k = 4
**Output:** [-1,-1]
**Example 3:**
**Input:** nums = [3,2,3,2,3,2], k = 2
**Output:** [-1,3,-1,3,-1]
**Constraints:**
- `1 <= n == nums.length <= 500`
- `1 <= nums[i] <= 105`
- `1 <= k <= n`